If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2-10x-9=0
a = 11; b = -10; c = -9;
Δ = b2-4ac
Δ = -102-4·11·(-9)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{31}}{2*11}=\frac{10-4\sqrt{31}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{31}}{2*11}=\frac{10+4\sqrt{31}}{22} $
| 44000+3900x=55000+2200x | | 3m-5+m+5=180 | | 2÷3x-1=7 | | -2y+2=-7y+7 | | 25-18x=15-6x | | 3=18a/8 | | 14=14c | | 4.9=x3.8 | | 1.25m=3m-1.500 | | –2=–u/4 | | 4(x-5)²=20 | | 3b+5b-6=30 | | 4d=3d=+6 | | -11=-6+v | | 11=-1+4v | | 24-(x-6)=-4x | | 1-2x-3=-12 | | Y+3=-2y+27 | | -4(3x-2)=5 | | 100=5b-60 | | 3g=3(18) | | 16a/4=-2 | | -3-15=-8y | | 3x+4/3-5x=6 | | 1/2(2-4X)+3x=1+x | | 3x+5+7x-2=180 | | 4x-7x=x-12 | | 4y+5y+2=88 | | 2x-7=-8x | | 3x/4x/5x/8x=360 | | 5m-6=-2m+29 | | 1,960+x(175.75)=4,420.50 |